
Real-Time, Continuous Level of Detail Rendering of Height Fields

Peter Lindstrom� David Koller� William Ribarsky�

Larry F. Hodges� Nick Faust† Gregory A. Turner‡

�†Georgia Institute of Technology
‡SAIC

Abstract

We present an algorithm for real-time level of detail reduction and
display of high-complexity polygonal surface data. The algorithm
uses a compact and efficient regular grid representation, and em-
ploys a variable screen-space threshold to bound the maximum er-
ror of the projected image. A coarse level of simplification is per-
formed to select discrete levels of detail for blocks of the surface
mesh, followed by further simplification through repolygonaliza-
tion in which individual mesh vertices are considered for removal.
These steps compute and generate the appropriate level of detail
dynamically in real-time, minimizing the number of rendered poly-
gons and allowing for smooth changes in resolution across areas
of the surface. The algorithm has been implemented for approxi-
mating and rendering digital terrain models and other height fields,
and consistently performs at interactive frame rates with high image
quality.

1 INTRODUCTION

Modern graphics workstations allow the display of thousands of
shaded or textured polygons at interactive rates. However, many
applications contain graphical models with geometric complexity
still greatly exceeding the capabilities of typical graphics hardware.
This problem is particularly prevalent in applications dealing with
large polygonal surface models, such as digital terrain modeling
and visual simulation.

In order to accommodate complex surface models while still
maintaining real-time display rates, methods for approximating the
polygonal surfaces and using multiresolution models have been
proposed [13]. Simplification algorithms can be used to generate
multiple surface models at varying levels of detail, and techniques
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Figure 1: Terrain surface tessellations corresponding to projected
geometric error thresholds of one (left) and four (right) pixels.

are employed by the display system to select and render the appro-
priate level of detail model.

In this paper we present a new level of detail display algorithm
that is applicable to surfaces that are represented as uniformly-
gridded polygonal height fields. By extending the regular grid rep-
resentation to allow polygons to be recursively combined where
appropriate, a mesh with fewer polygons can be used to represent
the height field (Figure 1). Such small, incremental changes to the
mesh polygonalization provide for continuous levels of detail and a
near optimal tessellation for any given viewpoint. The algorithm is
characterized by the following set of features:

� Large reduction in the number of polygons to be rendered.
Typically, the surface grid is decimated by several orders of
magnitude with no or little loss in image quality,accommo-
dating interactive frames rates for smooth animation.

� Smooth, continuous changes between different surface
levels of detail. The number and distribution of rendered
polygons change smoothly between successive frames, af-
fording maintenance of consistent frame rates.

� Dynamic generation of levels of detail in real-time. The
need for expensive generation of multiresolution models
ahead of time is eliminated, allowing dynamic changes to the
surface geometry to be made with little computational cost.

� Support for a user-specified image quality metric.The al-
gorithm is easily controlled to meet an image accuracy level
within a specified number of pixels. This parameterization al-
lows for easy variation of the balance between rendering time
and rendered image quality.

Related approaches to polygonal surface approximation and
multiresolution rendering are discussed in the next section. The
following sections of the paper describe the theory and procedures
necessary for implementing the real-time continuous rendering al-
gorithm. We conclude the paper by empirically evaluating the al-
gorithm with results from its use in a typical application.



2 RELATED WORK

A large number of researchers have developed algorithms for
approximating terrains and other height fields using polygonal
meshes. These algorithms attempt to represent surfaces with a
given number of vertices, or within a given geometric error metric,
or in a manner that preserves application specific critical features
of the surface. Uniform grid methods or irregular triangulations
are employed to represent the surfaces, and techniques including
hierarchical subdivisions and decimations of the mesh are used for
simplification and creation of multiresolution representations.

Much of the previous work on polygonalization of terrain-
like surfaces has concentrated on triangulated irregular networks
(TINs). A number of different approaches have been developed to
create TINs from height fields using Delaunay and other triangula-
tions [9, 10, 19], and hierarchical triangulation representations have
been proposed that lend themselves to usage in level of detail algo-
rithms [3, 4, 18]. TINs allow variable spacing between vertices of
the triangular mesh, approximating a surface at any desired level of
accuracy with fewer polygons than other representations. However,
the algorithms required to create TIN models are generally compu-
tationally expensive, prohibiting use ofdynamically created TINs
at interactive rates.

Regular grid surface polygonalizations have also been imple-
mented as terrain and general surface approximations [2, 7]. Such
uniform polygonalizations generally produce many more polygons
than TINs for a given level of approximation, but grid representa-
tions are typically more compact. Regular grid representations also
have the advantage of allowing for easier construction of a multiple
level of detail hierarchy. Simply subsampling grid elevation values
produces a coarser level of detail model, whereas TIN models gen-
erally require complete retriangulation in order to generate multiple
levels of detail.

Other surface approximation representations include hybrids of
these techniques, and methods that meet application specific crite-
ria. Fowler and Little [9] construct TINs characterized by certain
“surface specific” points and critical lines, allowing the TIN rep-
resentation to closely match important terrain features. Douglas
[5] locates specific terrain features such as ridges and channels in
a terrain model database, and represents the surface with line seg-
ments from these “information rich” features. This method gener-
ates only a single surface approximation, however, and is not easily
adapted to produce multiresolution models. Gross et al. [12] use
a wavelet transform to produce adaptive surface meshing from uni-
form grid data, allowing for local control of the surface level of
detail. This technique, however, has not yet proven to yield inter-
active frame rates. The general problem of surface simplification
has been addressed with methods for mesh decimation and opti-
mization [14, 20], although these techniques are not suitable for
on-the-fly generation of multiple levels of detail.

The issue of “continuous” level of detail representations for
models has been addressed both for surfaces and more general mod-
eling. Taylor and Barret [22] give an algorithm for surface polyg-
onalization at multiple levels of detail, and use “TIN morphing”
to provide for visually continuous change from one resolution to
another. Many visual simulation systems handle transitions be-
tween multiple levels of detail by alpha blending two models during
the transition period. Ferguson [8] claims that such blending tech-
niques between levels of detail may be visually distracting, and dis-
cusses a method of Delaunay triangulation and triangle subdivision
which smoothly matches edges across areas of different resolution.

3 MOTIVATION

The algorithm presented in this paper has been designed to meet a
number of criteria desirable for a real-time level of detail (LOD)

algorithm for height fields. These characteristics include:

(i) At any instant, the mesh geometry and the components that
describe it should be directly and efficiently queryable, al-
lowing for surface following and fast spatial indexing of both
polygons and vertices.

(ii) Dynamic changes to the geometry of the mesh, leading to re-
computation of surface parameters or geometry, should not
significantly impact the performance of the system.

(iii) High frequency data such as localized convexities and concav-
ities, and/or local changes to the geometry, should not have a
widespread global effect on the complexity of the model.

(iv) Small changes to the view parameters (e.g. viewpoint, view
direction, field of view) should lead only to small changes in
complexity in order to minimize uncertainties in prediction
and allow maintenance of (near) constant frame rates.

(v) The algorithm should provide a means of bounding the loss in
image quality incurred by the approximated geometry of the
mesh. That is, there should exist a consistent and direct rela-
tionship between the input parameters to the LOD algorithm
and the resulting image quality.

Note that some applications do not require the satisfaction of all
of these criteria. However, a polygon-based level of detail algo-
rithm that supports all of these features is clearly of great impor-
tance in areas such as terrain rendering, which often requires both
high frame rates and high visual fidelity, as well as fast and frequent
queries of a possibly deformable terrain surface. Our algorithm suc-
cessfully achieves all of the goals listed above.

Most contemporary approaches to level of detail management
fail to meet at least one of these five criteria. TIN models, for ex-
ample, do not in general meet the first two criteria. Generation of
even modest size TINs requires extensive computational effort. Be-
cause TINs are non-uniform in nature, surface following (e.g. for
animation of objects on the surface) and intersection (e.g. for colli-
sion detection, selection, and queries) are hard to handle efficiently
due to the lack of a spatial organization of the mesh polygons. The
importance of (ii) is relevant in many applications, such as games
and military applications, wheredynamic deformations of the mesh
occur, e.g. in the form of explosions.

The most common drawback of regular grid representations is
that the polygonalization is seldom optimal, or even near optimal.
Large, flat surfaces may require the same polygon density as small,
rough areas do. This is due to the sensitivity to localized, high fre-
quency data within large, uniform resolution areas of lower com-
plexity. (Most level of detail algorithms require that the mesh is
subdivided into rectangular blocks of polygons to allow for fast
view culling and coarse level of detail selection.) Hence, (iii) is
violated as a small bump in the mesh may force higher resolution
data than is needed to describe the remaining area of a block. This
problem may be alleviated by reducing the overall complexity and
applying temporal blending, or morphing, between different levels
of detail to avoid “popping” in the mesh [16, 22].

Common to typical TIN and regular grid LOD algorithms is the
discreteness of the levels of detail. Often, only a relatively small
number of models for a given area are defined, and the difference in
the number of polygons in successive levels of detail may be quite
large. When switching between two levels of detail, the net change
in the number of rendered polygons may amount to a substantial
fraction of the given rendering capacity, and may cause rapid fluc-
tuations in the frame rate.

Many LOD algorithms fail to recognize the need for an error
bound in the rendered image. While many simplification meth-
ods are mathematically viable, the level of detail generation and



selection are often not directly coupled with the screen-space error
resulting from the simplification. Rather, these algorithms char-
acterize the data with a small set of parameters that are used in
conjunction with viewpoint distance and view angle to select what
could be considered “appropriate” levels of detail. Examples of
such algorithms include TIN simplification [9], feature (e.g. peaks,
ridges, and valleys) identification and preservation [5, 21], and fre-
quency analysis/transforms such as wavelet simplification [6, 12].
These algorithms often do not provide enough information to de-
rive a tight bound on the maximum error in the projected image. If
image quality is important and “popping” effects need to be min-
imized in animations, the level of detail selection should be based
on a user-specified error tolerance measured in screen-space, and
should preferably be done on a per polygon/vertex basis.

The algorithm presented in this paper satisfies all of the above
criteria. Some key features of the algorithm include: flexibility and
efficiency afforded by a regular grid representation; localized poly-
gon densities due to variable resolution withineach block; screen-
space error-driven LOD selection determined by a single threshold;
and continuous level of detail, which will be discussed in the fol-
lowing section.

3.1 Continuous Level of Detail

Continuous level of detail has recently been used to describe a va-
riety of properties [8, 18, 22], some of which are discussed below.
As mentioned in (iii) and (iv) above, it is important that the com-
plexity of the surface geometry changes smoothly between consec-
utive frames, and that the simplified geometry doesn' t lead to gaps
or popping in the mesh. In a more precise description of the term
continuity in the context of multiresolution height fields, the con-
tinuous function, its domain, and its range must be clearly defined.
This function may be one of the following:

(i) The elevation functionz(x;y;t), wherex;y;t 2R. The parame-
ter t may denote time, distance, or some other scalar quantity.
This function morphs (blends) the geometries of two discrete
levels of detail defined on the same area, resulting in a vir-
tually continuous change in level of detail over time, or over
distance from the viewpoint to the mesh.

(ii) The elevation functionz(x;y)with domainR2. The functionz
is defined piecewise on a per block basis. When discrete levels
of detail are used to represent the mesh, two adjacent blocks
of different resolution may not align properly, and gaps along
the boundaries of the blocks may be seen. The elevationz
on these borders will not be continuous unless precautions are
taken to ensure that such gaps are smoothed out.

(iii) The polygon distribution functionn(v;A). For any given area
A � R2, the number of polygons used to describe the area
is continuous with respect to the viewpointv.1 Note thatA
does not necessarily have to be a connected set. Since the
image ofn is discrete, we define continuity in terms of the
modulus of continuityω(δ;n). We say thatn is continuous iff
ω(δ;n)! ε, for someε� 1, asδ! 0. That is, for sufficiently
small changes in the viewpoint, the change in the number of
polygons overA is at most one. As a consequence of a contin-
uous polygon distribution, the number of rendered polygons
(after clipping),n(v), is continuous with respect to the view-
point.

Note that a continuous level of detail algorithm may possess one or
more of these independent properties (e.g. (i) does not in general

1This vector may be generalized to describe other view dependent pa-
rameters, such as view direction and field of view.

imply (iii), and vice versa). Depending on the constraints inherent
in the tessellation method, criterion (iii) may or may not be satisfi-
able, but a small upper boundεmax on ε may exist. Our algorithm,
as presented here, primarily addresses definition (iii), but has been
designed to be easily extensible to cover the other two definitions
(the color plates included in this paper reflect an implementation
satisfying (ii)).

4 SIMPLIFICATION CRITERIA

The surface simplification process presented here is best described
as a sequence of two steps: a coarse-grained simplification of the
height field mesh geometry that is done to determine which dis-
crete level of detail models are needed, followed by a fine-grained
retriangulation of each LOD model in which individual vertices are
considered for removal. The algorithm ensures that no errors are
introduced in the coarse simplification beyond those that would be
introduced if the fine-grained simplification were applied to the en-
tire mesh. Both steps are executed for each rendered frame, and all
evaluations involved in the simplification are done dynamically in
real-time, based on the location of the viewpoint and the geometry
of the height field.

The height field is described by a rectilinear grid of points ele-
vated above thex-y plane, with discrete sampling intervals ofxres
andyres. The surface corresponding to the height field (before sim-
plification) is represented as a symmetric triangle mesh. The small-
est mesh representable using this triangulation, theprimitive mesh,
has dimensions 3�3 vertices, and successively larger meshes are
formed by grouping smaller meshes in a 2�2 array configuration
(see Figure 2). For any levell in this recursive construction of the
mesh, the vertex dimensionsxdim andydim are 2l +1. For a certain
leveln, the resulting mesh is said to form ablock, or a discrete level
of detail model. A set of such blocks of fixed dimensions 2n+1 ver-
tices squared, describes the height field dataset, where the boundary
rows and columns between adjacent blocks are shared. While the
dimensions of all blocks are fixed, the spatial extent of the blocks
may vary by multiples of powers of two of the height field sampling
resolution, i.e. the area of a block is 2m+nxres�2m+nyres wherem
is some non-negative integer. Thus, lower resolution blocks can be
obtained by discarding every other row and column of four higher
resolution blocks. We term these decimated vertices thelowest level
verticesof a block (see Figure 2c). Aquadtreedata structure [17]
naturally lends itself to the block partitioning of the height field
dataset described above.
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Figure 2: (a, b) Triangulation of uniform height fields of dimen-
sions 3�3 and 5�5 vertices, respectively. (c) Lowest level vertices
(unfilled). (d) Block quadrants.



In the following sections, we describe the different simplification
steps. We begin by deriving a criterion for the fine-grained (vertex-
based) simplification. The coarse-grained (block-based) level of
detail selection is then described in terms of the former.

4.1 Vertex-Based Simplification

In the fine-grained simplification step, many smaller triangles are
removed and replaced with fewer larger triangles. Conceptually, at
the beginning of each rendered frame, the entire height field dataset
at its highest resolution is considered. Wherever certain conditions
are met, atriangle/co-triangle pair(4al ;4ar ) is reduced to one
single triangle4al �4ar , and the resulting triangle and its co-
triangle (if one exists) are considered for further simplification in
a recursive manner. In thex-y plane withxres= yres, a triangle/co-
triangle pair is defined by the two congruent right triangles obtained
by bisecting a larger isosceles right triangle. Recursive bisection
of the resulting two triangles yields lower level triangle/co-triangle
pairs. Triangle/co-triangle pairs within a block are descended from
the four triangular quadrants of the block, defined by the block
boundary and its diagonals (see Figure 2d). For arbitrary height
field resolutions, the square mesh is simply stretched in either di-
mension while retaining the vertex connections. Figure 2a and 2b
illustrate the lowest level pairs, whereeach pair has been assigned
a unique letter.

The conditions under which a triangle pair can be combined
into a single triangle are primarily described by the amount of
change in slope between the two triangles. For triangles4ABE
and4BCE, with A, B, andC in a plane perpendicular to thex-y
plane, the slope change is measured by the vertical (z axis) distance
δB = jBz�

Az+Cz
2 j, i.e. the maximum vertical distance between

4ACE=4ABE�4BCEand the triangles4ABEand4BCE (see
Figure 3). This distance is referred to as vertexB'sdelta value. As
the delta value increases, the chance of triangle fusion decreases.
By projecting thedelta segment, defined byB and the midpoint of
AC, onto the projection plane, one can determine the maximum per-
ceived geometric (linear) error between the merged triangle and its
corresponding sub-triangles. If this error is smaller than a given
threshold,τ, the triangles may be fused. If the resulting triangle
has a co-triangle with error smaller than the threshold, this pair is
considered for further simplification. This process is applied recur-
sively until no further simplification of the mesh can be made. Note
that this scheme typically involves a reduction of an already sim-
plified mesh, and the resulting errors (i.e. the projected delta seg-
ments) are not defined with respect to the highest resolution mesh,
but rather relative to the result of the previous iteration in the simpli-
fication process. However, empirical data indicates that the effects
of this approximation are negligible (see Section 7).

We now derive a formula for the length of the projected delta
segment. Letv be the midpoint of the delta segment,2 and define
v+ = v+

�
0 0 δ

2

�
, v� = v�

�
0 0 δ

2

�
. Let e be the

viewpoint andx̂, ŷ, ẑ be the orthonormal eye coordinate axes ex-
pressed in world coordinates. Furthermore, letd be the distance
from e to the projection plane, and defineλ to be the number of
pixels per world coordinate unit in the screenx-y coordinate sys-
tem. (We assume that the pixel aspect ratio is 1:1.) The subscripts
eyeandscreenare used to denote vectors represented ineye coordi-
nates(after the view transformation) andscreen coordinates(after
the perspective projection), respectively. Using these definitions,
the following approximations are made:

� When projecting the vectorsv+ andv�, their midpointv is al-
ways assumed to be in the center of view, i.e. along�ẑ. This

2One may safely substitute the vertex associated with the delta segment
for its midpoint.
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Figure 3: Geometric representation of delta values.δB = 4,
δD = 2:5, δF = 1:5, δH = 0.

approximation is reasonable as long as the field of view is rel-
atively small, and its effect is that the projected delta segments
that represent the errors in the triangle simplification become
relatively smaller at the periphery of the screen, where less de-
tail is then used—an artifact that is often acceptable as human
visual perception degrades toward the periphery.

� We assumev+eyez ' v�eyez ' veyez in the perspective divi-

sion 1
�veyez

. This is a fair assumption because, in general,

δ� jje�vjj =�veyez.

According to the first approximation, the viewing matrix is then:

M =

2
66664

x̂x ŷx
ex�vx
jje�vjj 0

x̂y ŷy
ey�vy

jje�vjj 0

x̂z ŷz
ez�vz
jje�vjj 0

�e� x̂ �e� ŷ �e� e�v
jje�vjj 1

3
77775

with x̂ andŷ perpendicular toe� v at all times. This definition of
M leads to the following equalities:

v+eye�v�eye = v+M �v�M

= δ
h

x̂z ŷz
ez�vz
jje�vjj 0

i

x̂2
z+ ŷ2

z = 1�

�
ez�vz

jje�vjj

�2

The length of the projected delta segment is then described by the
following set of equations:

δscreen = jjv+screen�v�screenjj

=
dλ
q

(v+eyex�v�eyex)
2+(v+eyey�v�eyey)

2

�veyez

=
dλ
q

(δx̂z)
2+(δŷz)

2

jje�vjj

=
dλδ

r
1�

�
ez�vz

jje�vjj

�2

jje�vjj

=
dλδ

q
(ex�vx)2+(ey�vy)2

(ex�vx)2+(ey�vy)2+(ez�vz)2 (1)



For performance reasons,δ2
screen is compared toτ2 so that the

square root can be avoided:

d2λ2δ2
�
(ex�vx)2+(ey�vy)2

�
�
(ex�vx)2+(ey�vy)2+(ez�vz)2

�2 � τ2

An equivalent inequality that defines the simplification condition
reduces to a few additions and multiplications:

δ2
�
(ex�vx)

2+(ey�vy)
2
�
�

κ2
�
(ex�vx)

2+(ey�vy)
2+(ez�vz)

2
�2

(2)

whereκ = τ
dλ is a constant. Wheneverex = vx andey = vy, i.e.

when the viewpoint is directly above or below the delta segment,
the projection is zero, and the triangles are coalesced. The prob-
ability of satisfying the inequality decreases asez approachesvz,
or when the delta segment is viewed from the side. This makes
sense, intuitively, as less detail is required for a top-down view of
the mesh (assuming a monoscopic view), while more detail is nec-
essary to accurately retain contours and silhouettes in side views.
The geometric interpretation of the complement of Equation 2 is a
“bialy”—a solid circular torus with no center hole—centered atv,
with radiusr = dλδ

2τ (see Figure 4). The triangles associated withv
can be combined provided that the viewpoint is not contained in the
bialy.

Figure 4: Geometric representation (and its cross-section) of the
boundary of Equation 2.

4.2 Block-Based Simplification

Complex datasets may consist of millions of polygons, and it is
clearly too computationally expensive to run the simplification pro-
cess described in the previous section on all polygon vertices for
each individual frame. By obtaining a conservative estimate of
whether certain groups of vertices can be eliminated in a block, the
mesh can often be decimated by several factors with little computa-
tional cost. If it is known that the maximum delta projection of all
lowest level vertices in a block falls withinτ, those vertices can im-
mediately be discarded, and the block can be replaced with a lower
resolution block, which in turn is considered for further simplifica-
tion. Accordingly, a large fraction of the delta projections can be
avoided.

The discrete level of detail selection is done by computing the
maximum delta value,δmax, of the lowest level vertices for each
block. Given the axis-aligned bounding box of a block andδmax,
one can determine, for a given viewpoint, whether any of these
vertices have delta values large enough to exceed the thresholdτ.
If none of them do, a lower resolution model may be used. We
can expand on this idea to obtain a more efficient simplification
algorithm. By usingτ, the view parameters, and the constraints
provided by the bounding box, one can compute the smallest delta
valueδl that, when projected, can exceedτ, as well as the largest
delta valueδh that may project smaller thanτ. Delta values between
these extremes fall in anuncertainty interval, which we denote by

Iu = (δl ;δh], for which Equation 2 has to be evaluated. Vertices
with delta values less thanδl can readily be discarded without fur-
ther evaluation, and conversely, vertices with delta values larger
thanδh cannot be removed. It would obviously be very costly to
computeIu by reversing the projection to get the delta value whose
projection equalsτ for every single vertex within the block, but one
can approximateIu by assuming that the vertices are dense in the
bounding box of the block, and thus obtain a slightly larger superset
of Iu. From this point on, we will useIu to denote this superset.

To find the lower boundδl of Iu, the point in the bounding box
that maximizes the delta projection must be found. From Equa-

tion 1, definer =
q

(ex�vx)2+(ey�vy)2 andh= ez�vz. We seek

to maximize the functionf (r;h) = r
r2+h2 subject to the constraints

r2+h2 � d2 andv 2 B, whered is the distance from the viewpoint
to the projection plane andB is the set of points contained in the
bounding box, described by the two vectors

bmin =
�

bminx bminy bminz

�
bmax =

�
bmaxx bmaxy bmaxz

�
We solve this optimization problem by constrainingr , such that
d2� h2 � r2

min � r2 � r2
max (r andh are otherwise independent).

Clearly, then,h2 has to be minimized which is accomplished by
settingh= hmin = jez�clamp(bminz;ez;bmaxz)j, where

clamp(xmin;x;xmax) =

8<
:

xmin if x< xmin
xmax if x> xmax
x otherwise

In the x-y plane, definermin to be the smallest distance from�
ex ey

�
to the rectangular slice (including the interior) of the

bounding box defined by
�

bminx bminy

�
and

�
bmaxx bmaxy

�
,

and definermax to be the largest such distance. Via partial differ-
entiation with respect tor , the maximumfmaxof f (r;h) is found at
r = h. If no v exists under the given constraints that satisfiesr = h,
r is increased/decreased untilv 2 B, i.e. r = clamp(rmin;h; rmax).

The upper bound,δh, is similarly found by minimizingf (r;h).
This is done by setting h = hmax= maxfjez�bminzj; jez�bmaxzjg.
fmin is then found when eitherr = rmin or r = rmax, whichever yields
a smallerf (r;h).

The bounds onIu can now be found using the following equa-
tions:

δl =
τ

dλ fmax
(3)

δh =

8<
:

0 if τ = 0
τ

dλ fmin
if τ > 0 and fmin > 0

∞ otherwise
(4)

After computation ofIu, δmax is compared toδl , and if smaller,
a lower resolution level of detail block is substituted, and the pro-
cess is repeated for this block. Ifδmax> δl , it may be that a higher
resolution block is needed. By maintainingδ�max = maxifδmaxig,
the largestδmax of all higher resolution blocks (orblock descen-
dants) for the given area,δ�max is compared toδl for the current
block, and if greater, four higher resolution blocks replace the cur-
rent block. As mentioned earlier, this implicit hierarchical organi-
zation of blocks is best represented by a quadtree, where each block
corresponds to a quadnode.

4.3 Vertex Dependencies

As pointed out in Section 4.1, triangle fusion can occur only when
the triangles in the triangle pair appear on the same level in the
triangle subdivision. For example, in Figure 2b,4el �4er and



4 fl �4 fr cannot be coalesced unless the triangles in both pairs
(4el ;4er ) and(4 fl ;4 fr ) have been fused. The triangles can be
represented by nodes in a binary expression tree, where the small-
est triangles correspond to terminal nodes, and coalesced triangles
correspond to higher level, nonterminal nodes formed by recursive
application of the� operator (hence the subscriptsl andr for “left”
and “right”). Conceptually, this tree spans the entire height field
dataset, but can be limited to each block.

Another way of looking at triangle fusion is as vertex removal,
i.e. when two triangles are fused, one vertex is removed. We call
this vertex thebase vertexof the triangle pair. Each triangle pair has
a co-pair associated with it,3 and the pair/co-pair share the same
base vertex. The mapping of vertices to triangle pairs, or the nodes
associated with the operators that act on the triangle pairs, results
in a vertex tree, wherein each vertex occurs exactly twice; once
for each triangle pair (Figures 5g and 5h). Hence, each vertex has
two distinct parents (or dependents)—one in each of two binary
subtreesT0 andT1—as well as four distinct children. If any of the
descendants of a vertexv are included in the rendered mesh, so
is v, and we say thatv is enabled. If the projected delta segment
associated withv exceeds the thresholdτ, v is said to beactivated,
which also implies thatv is enabled. Thus, theenabledattribute of
v is determined by

activated(v)_

enabled(le f tT0(v))_

enabled(rightT0(v))_

enabled(le f tT1(v))_

enabled(rightT1(v))) enabled(v)

An additional vertex attribute,locked, allows theenabledflag to be
hardwired to eithertrue or false, overriding the relationship above.
This may be necessary, for example, when eliminating gaps be-
tween adjacent blocks if compatible levels of detail do not exist,
i.e. some vertices on the boundaries of the higher resolution block
may have to be permanently disabled. Figures 5a–e show the de-
pendency relations between vertices level by level. Figure 5f shows
the influence of an enabled vertex over other vertices that directly
or indirectly depend on it. Figures 5g and 5h depict the two possi-
ble vertex tree structures within a block, where intersections have
been separated for clarity.

To satisfy continuity condition (ii) (see Section 3.1), the al-
gorithm must consider dependencies that cross block boundaries.
Since the vertices on block boundaries are shared between adja-
cent blocks, these vertices must be referenced uniquely, so that the
dependencies may propagate across the boundaries. In most imple-
mentations, such shared vertices are simply duplicated, and these
redundancies must be resolved before or during the simplification
stage. One way of approaching this is to access each vertex via a
pointer, and discard the redundant copies of the vertex before the
block is first accessed. Another approach is to ensure that the at-
tributes of all copies of a vertex are kept consistent when updates
(e.g.enabledandactivatedtransitions) occur. This can be achieved
by maintaining a circular linked list of copies for each vertex.

5 ALGORITHM OUTLINE

The algorithm presented here describes the steps necessary to se-
lect which vertices should be included for rendering of the mesh.
In Section 5.1, we describe how the mesh is rendered once the ver-
tex selection is done. A discussion of appropriate data structures is
presented in Section 6. Using the equations presented in previous

3Triangle pairs with base vertices on the edges of the finite dataset are
an exception.

a. b. c.

d. e. f.

g. h. i.

Figure 5: (a–e) Vertex dependencies by descending levels (left to
right, top to bottom). An arc fromA to B indicates thatB depends
on A. (f) Chain of dependencies originating from the solid vertex.
(g, h) Symmetric binary vertex trees (the arcs in (g) correspond to
(f)). (i) Triangulation corresponding to(f).

sections, the algorithm is summarized by the pseudocode below.
Unless qualified with superscripts, all variables are assumed to be-
long to the current frame and block.

MAIN ()
1 for each framen
2 for eachactive blockb
3 computeIu (Equations 3 and 4)
4 if δmax� δl
5 replaceb with lower resolution block
6 else ifδ�max> δl
7 replaceb with higher resolution blocks
8 for eachactive blockb
9 determine ifb intersects the view frustum

10 for eachvisible blockb
11 I0 (δn�1

l ;δn
l ]

12 I1 (δn
h;δ

n�1
h ]

13 for eachvertexv with δ(v)2 I0
14 activated(v) false
15 UPDATE-VERTEX(v)
16 for eachvertexv with δ(v)2 I1
17 activated(v) true
18 UPDATE-VERTEX(v)
19 for eachvertexv with δ(v)2 Iu
20 EVALUATE -VERTEX(v)
21 for eachvisible blockb
22 RENDER-BLOCK(b)

UPDATE-VERTEX(v)
1 if :locked(v)
2 if :dependencyi(v) 8i
3 if enabled(v) 6= activated(v)
4 enabled(v) :enabled(v)
5 NOTIFY(parentT0(v);branchT0(v);enabled(v))
6 NOTIFY(parentT1(v);branchT1(v);enabled(v))



EVALUATE -VERTEX(v)
1 if :locked(v)
2 if :dependencyi(v) 8i
3 activated(v) :Equation 2
4 if enabled(v) 6= activated(v)
5 enabled(v) :enabled(v)
6 NOTIFY(parentT0(v);branchT0(v);enabled(v))
7 NOTIFY(parentT1(v);branchT1(v);enabled(v))

NOTIFY(v;child;state)
1 if v is a valid vertex
2 dependencychild(v) state
3 if :locked(v)
4 if :dependencyi(v) 8i
5 if :activated(v)
6 enabled(v) false
7 NOTIFY(parentT0(v);branchT0(v), false)
8 NOTIFY(parentT1(v);branchT1(v), false)
9 else

10 if :enabled(v)
11 enabled(v) true
12 NOTIFY(parentT0(v);branchT0(v), true)
13 NOTIFY(parentT1(v);branchT1(v), true)

The termactive blockrefers to whether the block is currently
the chosen level of detail for the area it covers. All blocks initially
haveIu set to[0;∞), and so do blocks that previously were inactive.
When deactivating vertices with delta values smaller thanδl , the in-
tervalI0 � [0;δl ] is traversed. By inductive reasoning, vertices with
deltas smaller than the lower bound ofI0 must have been deacti-
vated in previous frames. Similarly,I1 is used for vertex activation.
In quadtree implementations, the condition on line 4 inMAIN may
have to be supplemented; the condition δmax� δl should also hold
for the three neighboring siblings ofb beforeb can be replaced.

If a vertex's enabled attribute changes, all dependent ver-
tices must be notified of this change so that their corresponding
dependencyflags are kept consistent with this change. The proce-
dureUPDATE-VERTEXchecks ifenabled(v)has changed, and if so,
notifiesv's dependents by callingNOTIFY. If the enabledflag of a
dependent in turn is modified,NOTIFY is called recursively. Since
line 2 in NOTIFY necessarily involves a change of adependencybit,
there may be a transition inenabled(v) from true to falseon line 6
providedactivated(v) is falseas the vertex is no longer dependent.
The evaluation of Equation 2 on line 3 inEVALUATE -VERTEX can
be deferred if any of the vertex'sdependencyflags are set, which is
of significant importance as this evaluation is one of the most com-
putationally expensive parts of the algorithm. Note that there may
be a one-frame delay before theactivatedattribute is corrected due
to this deferral if the child vertices are evaluated after the dependent
vertex (line 2 ofEVALUATE -VERTEX and lines 4–5 ofNOTIFY).
The functionbranchT(v) refers to the field of the parent in treeT
that reflects theenabledfield of vertexv. Note that a check has
to be made (line 1 inNOTIFY) whether a vertex is “valid” as some
vertices have fewer than two dependents (e.g. boundary vertices).

5.1 Mesh Rendering

Once the vertex selection is made, a triangle mesh must be formed
that connects the selected vertices. This mesh is defined by speci-
fying the vertices encountered in a pre-order descent of the binary
vertex trees. The recursive stopping condition is a false enabled
attribute. To efficiently render the mesh, a triangle mesh graph-
ics primitive, such as the one supported by IRIS GL and OpenGL
[11, 15], may be used. For each specified vertexv, the previous two
vertices andv form the next triangle in the mesh. At certain points,
the previous two vertices must be swapped via aswaptmesh()

call (IRIS GL), or aglVertex() call (OpenGL). A copy of the
two-entry graphics vertex buffer,my-bu f f er, is maintained explic-
itly to allow the decision as to when to swap the entries to be made.
The most recent vertex in this buffer is indexed byptr.

The following pseudocode describes the mesh rendering algo-
rithm. Each of the four triangular quadrantsqi are rendered in coun-
terclockwise order, with the first vertex in each quadrant coincident
with the last vertex in the previous quadrant (see Figure 2d). Hence,
a single triangle mesh can be used to render the entire block. The
indicesqi l , qit , andqir correspond to the left, top, and right vertex
indices of quadrantqi, respectively, with the “top” index being the
center of the block. The block dimensions are 2n+1 squared.

RENDER-BLOCK(b)
1 enter triangle mesh mode
2 render vertexvq0l

3 my-bu f f erptr q0l
4 previous-level 0
5 for eachquadrantqi in blockb
6 if previous-level is even
7 toggleptr
8 else
9 swap vertices in graphics buffer

10 render vertexvqi l

11 my-bu f f erptr qi l
12 previous-level 2n+1
13 RENDER-QUADRANT(qil ;qit ;qi r ;2n)
14 render vertexvq0l

15 exit triangle mesh mode

RENDER-QUADRANT(il ; it ; ir ; level)
1 if level> 0
2 if enabled(vit)

3 RENDER-QUADRANT(il;
il+ir

2 ; it ; level�1)
4 if it 62my-bu f f er
5 if level+ previous-level is odd
6 toggleptr
7 else
8 swap vertices in graphics buffer
9 render vertexvit

10 my-bu f f erptr it
11 previous-level level
12 RENDER-QUADRANT(it;

il+ir
2 ; ir ; level�1)

The indexil+ir
2 corresponds to the (base) vertex that in thex-y plane

is the midpoint of the edgevil vir . Sincemy-bu f f er reflects what
vertices are currently in the graphics buffer, line 9 inRENDER-
BLOCK and line 8 inRENDER-QUADRANT could be implemented
with aglVertex() call, passing the second most recent vertex in
my-bu f f er.

6 DATA STRUCTURES

Many of the issues related to the data structures used with this al-
gorithm have purposely been left open, as different needs may de-
mand totally different approaches to their representations. In one
implementation—the one presented here—as few as six bytes per
vertex were used, and as many as 28 bytes per vertex were needed
in another. In this section, we describe data structures that will be
useful in many implementations.

For a compact representation, the vertex elevation is discretized
and stored as a 16-bit integer. A minimum of six additional
bits per vertex are required for the various flags, including the
enabled, activated, and fourdependencyattributes. Optionally,
the locked attribute can be added to these flags. The theoreti-
cal range of delta values becomes[0;216� 1] in steps of1

2. We



elect to store eachδ in “compressed” form as an 8-bit integerδ̂
in order to conserve space by encapsulating the vertex structure in
a 32-bit aligned word. We define the decompression function as

δ = 1
2b(1+ δ̂)1+δ̂2=(28

�1)2
� 1c.4 This exponential mapping pre-

serves the accuracy needed for the more frequent small deltas, while
allowing large delta values to be represented, albeit with less accu-
racy. The compression function is defined as the inverse of the de-
compression function. Both functions are implemented as lookup
tables.

To accommodate tasks such as rendering and surface following,
the vertices must be organized spatially for fast indexing. In Sec-
tion 4.2, however, we implied that vertices within ranges of delta
values could be immediately accessed. This is accomplished by cre-
ating an auxiliary array of indices, in which the entries are sorted
on the corresponding vertices' delta values. Each entry uniquely
references the corresponding vertex(i; j) via an index into the ar-
ray of vertex structures. For each possible compressed delta value
within a block, there is a pointer (index)pδ̂ to a bin that contains
the vertex indices corresponding to that delta value. The 28 bins
are stored in ascending order in a contiguous, one-dimensional ar-
ray. The entries in bini are then indexed bypi ; pi +1; : : : ; pi+1�1
(pi = pi+1 implies that bini is empty). For block dimensions up
to 27+1, the indices can be represented with 16 bits to save space,
which in addition to the 32-bit structure described above, results in
a total of six bytes storage per vertex.

7 RESULTS

To show the effectiveness of the polygon reduction and display al-
gorithm, we here present the results of a quantitative analysis of the
number of polygons and delta projections, frame rates, computa-
tion and rendering time, and errors in the approximated geometry.
A set of color plates show the resulting wireframe triangulations
and textured terrain surfaces at different stages of the simplifica-
tion and for different choices ofτ. Two height field datasets were
used in generating images and collecting data: a 64 km2 area digital
elevation model of the Hunter-Liggett military base in California,
sampled at 2�2 meter resolution, and 1 meter height (z) resolution
(Color Plates 1a–c and 2a–c); and a 1�1 meter resolution, 14 km2

area of 29 Palms, California, with az resolution of one tenth of a
meter (Color Plates 3a–d). The vertical field of view is 60� in all
images, which were generated on a two-processor, 150 MHz SGI
Onyx RealityEngine2 [1], and have dimensions 1024�768 pixels
unless otherwise specified.

We first examine the amount of polygon reduction as a function
of the thresholdτ. A typical view of the Hunter-Liggett terrain was
chosen for this purpose, which includes a variety of features such
as ridges, valleys, bumps, and relatively flat areas. Figure 6 shows
four curves drawn on a logarithmic scale (vertical axis). The top
horizontal line,n0(τ) = 13� 106, shows the total number of poly-
gons in the view frustum before any reduction method is applied.
The curve second from the top,n1(τ), represents the number of
polygons remaining after the block-based level of detail selection
is done. The number of polygons rendered,n2(τ), i.e. the remain-
ing polygons after the vertex-based simplification, is shown by the
lowest solid curve. As expected, these two curves flatten out asτ
is increased. The ration0(τ)=n2(τ) ranges from about 2 (τ = 0) to
over 6,000 (τ = 8). Of course, atτ = 0, only coplanar triangles are
fused. The ration1(τ)=n2(τ) varies between 1.85 and 160 over the
same interval, which clearly demonstrates the advantage of refining
each uniform level of detail block.

We pay special attention to the data obtained atτ = 1, as this
threshold is small enough that virtually no popping can be seen in

4This results in an upper bound2
16
�1

2 for the delta values.

τ displacement
mean median max std. dev. > τ (%)

0.000 0.00 0.00 0.00 0.00 0.00
0.125 0.03 0.00 0.52 0.05 6.41
0.250 0.06 0.00 0.85 0.09 4.52
0.500 0.11 0.04 1.56 0.15 3.14
1.000 0.21 0.07 2.88 0.29 2.61
2.000 0.42 0.13 5.37 0.59 2.84
4.000 0.88 0.23 10.41 1.24 3.27
8.000 1.38 0.19 16.69 2.08 1.38

Table 1: Screen-space error in simplified geometry.

animated sequences, and the resulting surfaces, when textured, are
seemingly identical to the ones obtained with no mesh simplifica-
tion. Color Plates 1a–c illustrate the three stages of simplification
at τ = 1. In Color Plate 1c, note how many polygons are required
for the high frequency data, while only a few, large polygons are
used for the flatter areas. For this particular threshold,n0(1)=n2(1)
is slightly above 200, whilen1(1)=n2(1) is 18. The bottommost,
dashed curve in Figure 6 represents the total number of delta values
that fall in the uncertainty interval per frame (Section 4.2). Note
that this quantity is generally an order of magnitude smaller than
the number of rendered polygons. This is significant as the evalu-
ations associated with these delta values constitute the bulk of the
computation in terms of CPU time. This also shows the advantage
of computing the uncertainty interval, as out of the eight million
vertices contained in the view frustum, only 14,000 evaluations of
Equation 2 need to be made whenτ = 1.
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Figure 6: The number of polygons (n0, n1, n2, from top to bottom)
as a function ofτ. The bottom curve shows the number of times
Equation 2 was evaluated per frame.

In order to evaluate the errors due to the simplification, the points
on the polygonal surface of the simplified mesh that have been dis-
placed vertically, as well as the remaining triangle vertices, are per-
spective projected to screen-space and compared to the projections
of the original set of vertices. Optimally, each such screen coordi-
nate displacement should fall within the threshold distanceτ. How-
ever, this constraint may in certain cases be violated due to the ap-
proximations discussed in Section 4.1. Table 1 was compiled for
each mesh after vertex-based simplification was applied, and the
surface points were correlated with the original eight million ver-
tices shown in Color Plate 1a. The table summarizes the mean,
median, maximum, and standard deviation of the displacements in
number of pixels, as well as the fraction of displacements that ex-
ceedτ. In all cases, the average pixel error is well belowτ. It can
be seen that the approximations presented in Section 4.1 do not sig-
nificantly impact the accuracy, as the fraction of displacements that
exceedτ is typically less than five percent.

Color Plates 2a–c illustrate a checkerboard pattern draped over
the polygonal meshes from Color Plates 1a–c. Qualitatively, these
images suggestlittle or no perceivable loss in image quality for a



threshold of one pixel, even when the surface complexity is reduced
by a factor of 200.

Figure 7 demonstrates the efficiency of the algorithm. The com-
putation time associated with the delta projections (lines 10–20 in
MAIN , Section 5) is typically only a small fraction of the render-
ing time. This data was gathered for the views shown in Color
Plates 3a–d.
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Figure 7: Rendering and evaluation times and their sum as functions
of τ.

Figure 8 shows how the quantities in Figure 6, as well as the
frame rate vary with time. The data collection for 3,230 frames was
done over a time period of 120 seconds, with the viewpoint follow-
ing a circular path of radius 1 km over the Hunter-Liggett dataset.
The terrain was rendered as a wireframe mesh in a 640�480 win-
dow, with τ = 2 pixels. It can be seen that the number of rendered
polygons does not depend on the total number of polygons in the
view frustum, but rather on the complexity of the terrain intersected
by the view frustum. As evidenced by the graph, a frame rate of at
least 20 frames per second was sustained throughout the two min-
utes of fly-through.
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Figure 8: Time graph of (a) total number of polygons in view
frustum, (b) number of polygons after block-based simplification,
(c) number of polygons after vertex-based simplification, (d) num-
ber of delta projections, and (e) frames per second.

8 CONCLUSION

We have presented a height-field display algorithm based on real-
time, per vertex level of detail evaluation, that achieves interac-
tive and consistent frame rates exceeding twenty frames per sec-
ond, with only a minor loss in image quality. Attractive features
attributed to regular grid surface representations, such as fast geo-
metric queries, compact representation, and fast mesh rendering are

retained. The concept of continuous level of detail allows a polygon
distribution that is near optimal for any given viewpoint and frame,
and also yields smooth changes in the number of rendered poly-
gons. A single parameter that can easily be changed interactively,
with no incurred cost, determines the resulting image quality, and
a direct relationship between this parameter and the number of ren-
dered polygons exists, providing capabilities for maintaining con-
sistent frame rates. The algorithm can easily be extended to handle
the problem of gaps between blocks of different levels of detail, as
well as temporal geometry morphing to further minimize popping
effects.
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1a. 1b. 1c.

2a. Before simplification
      13,304,214 polygons

2b. After block−based LOD
      1,179,690 polygons

2c. After vertex−based LOD
      64,065 polygons

3a.  τ = 0.5,  62,497 polygons 3b.  τ = 1.0,  23,287 polygons

3c.  τ = 2.0,  8,612 polygons 3d.  τ = 4.0,  3,385 polygons


