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Abstract

We present an algorithm for real-time level of detail reduction and
display of high-complexity polygonal surface data. The algorithm

uses a compact and efficient regular grid representation, and em- ¢
ploys a variable screen-space threshold to bound the maximum er- £

ror of the projected image. A coarse level of simplification is per-
formed to select discrete levels of detail for blocks of the surface
mesh, followed by further simplification through repolygonaliza-
tion in which individual mesh vertices are considered for removal.

Figure 1: Terrain surface tessellations corresponding to projected

These steps compute and generate the appropriate level of detaieometric error thresholds of one (left) and four (right) pixels.

dynamically in real-time, minimizing the number of rendered poly-

gons and allowing for smooth changes in resolution across areas

of the surface. The algorithm has been implemented for approxi-
mating and rendering digital terrain models and other height fields,
and consistently performs at interactive frame rates with high image
quality.

1 INTRODUCTION

Modern graphics workstations allow the display of thousands of

are employed by the display system to select and render the appro-
priate level of detail model.

In this paper we present a new level of detail display algorithm
that is applicable to surfaces that are represented as uniformly-
gridded polygonal height fields. By extending the regular grid rep-
resentation to allow polygons to be recursively combined where
appropriate, a mesh with fewer polygons can be used to represent
the height field (Figure 1). Such small, incremental changes to the
mesh polygonalization provide for continuous levels of detail and a

shaded or textured polygons at interactive rates. However, manyn€ar optimal tessellation fo_r any given viewpoint. The algorithm is
applications contain graphical models with geometric complexity characterized by the following set of features:

still greatly exceeding the capdlities of typical graphics hardware.
This problem is particularly prevalent in applications dealing with
large polygonal surface models, such as digital terrain modeling
and visual simulation.

In order to accommodate complex surface models while s
maintaining real-time display rates, methods for approximating the
polygonal surfaces and using fttikesolution models have been
proposed [13]. Simplification algorithms can be used to generate
multiple surface models at varying levels of detail, and techniques
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e Largereduction in the number of polygonsto be rendered.
Typically, the surface grid is decimated by several orders of
magnitude with no or little loss in image qualigccommo-
dating interactive frames rates for smooth animation.

Smooth, continuous changes between different surface
levels of detail. The number and distribution of rendered
polygons change smoothly between successive frames, af-
fording maintenance of consistent frame rates.

Dynamic generation of levels of detail in real-time. The
need for expensive generation of multiresolution models
ahead of time is eliminated, allowing dynamic changes to the
surface geometry to be made with little computational cost.

Support for a user-specified image quality metric.The al-
gorithm is easily controlled to meet an image accuracy level
within a specified number of pixels. This parameterization al-
lows for easy variation of the balance between rendering time
and rendered image quality.

Related approaches to polygonal surface approximation and
multiresolution rendering are discussed in the next section. The
following sections of the paper describe the theory and procedures
necessary for implementing the real-time continuous rendering al-
gorithm. We conclude the paper by empirically evaluating the al-
gorithm with results from its use in a typical application.



2 RELATED WORK algorithm for height fields. These characteristics include:

A large number of researchers have developed algorithms for (i) At any instant, the mesh geometry and the components that

approximating terrains and other height fields using polygonal describe it should be directly and efficiently queryable, al-
meshes. These algorithms attempt to represent surfaces with a lowing for surface following and fast spatial indexing of both
given number of vertices, or within a given geometric error metric, polygons and vertices.

or in a manner that preserves application specific critical features ) .
of the surface. Uniform grid methods or irregular triangulations (i) Dynamic changes to the geometry of the mesh, leading to re-
are employed to represent the surfaces, and techniques including ~ computation of surface parameters or geometry, should not
hierarchical subdivisions and decimations of the mesh are used for ~ Significantly impact the performance of the system.
simplification and creation of multiresolution representations.
Much of the previous work on polygonalization of terrain-

like surfaces has concentrated on triangulated irregular networks
(TINs). A number of different approaches have been developed to

create TINs from he|ght fields USing Delaunay and other triangula' (lV) Small Changes to the view parameters (eg Viewpoint’ view

(iii) High frequency data such as localized convexities and concav-
ities, and/or local changes to the geomethgud not have a
widespread global effect on the complexity of the model.

tions [9, 10, 19], and hierarchical triangulation r_epresentations haVe direction’ f|e|d Of View) should |ead On|y to sma" Changes in
been proposed that lend themselves to usage in level of detail algo-  complexity in order to minimize uncertainties in prediction
rithms [3, 4, 18] TINs allow variable spacing between vertices of and allow maintenance of (near) constant frame rates.

the triangular mesh, approximating a surface at any desired level of
accuracy with fewer polygons than other representations. However, (v) The algorithm should provide a means of bounding the loss in

the algorithms required to create TIN models are generally compu- image quality incurred by the approximated geometry of the

tationally expensive, prohibiting use dffnamically created TINs mesh. That is, there should exist a consistent and direct rela-

at interactive rates. tionship between the input parameters to the LOD algorithm
Regular grid surface polygonalizations have also been imple- and the resulting image quality.

mented as terrain and general surface approximations [2, 7]. Such
uniform polygonalizations generally produce many more polygons Note that some applications do not require the satisfaction of all
than TINs for a given level of approximation, but grid representa- of these criteria. However, a polygon-based level of detail algo-
tions are typically more compact. Regular grid representations alsofithm that supports all of these features is clearly of great impor-
have the advantage of allowing for easier construction of a multiple tance in areas such as terrain rendering, which often requires both
level of detail hierarchy. Simply subsampling grid elevation values high frame rates and high visual fidelity, as well as fast and frequent
produces a coarser level of detail model, whereas TIN models gen-queries of a possibly deformable terrain surface. Our algorithm suc-
erally require complete retriangulation in order to generatiijphe: cessfully achieves all of the goals listed above.
levels of detail. Most contemporary approaches to level of detail management
Other surface approximation representations include hybrids of fail to meet at least one of these five criteria. TIN models, for ex-
these techniques, and methods that meet application specific crite@mple, do not in general meet the first two criteria. Generation of
ria. Fowler and Little [9] construct TINs characterized by certain even modest size TINs requires extensive computational effort. Be-
“surface specific” points and critical lines, allowing the TIN rep- cause TINs are non-uniform in nature, surface following (e.g. for
resentation to closely match important terrain features. Douglas animation of objects on the surface) and intersection (e.g. #tif co
[5] locates specific terrain features such as ridges and channels insion detection, selection, and queries) are hard to handle efficiently
a terrain model database, and represents the surface with line segdue to the lack of a spatial organization of the mesh polygons. The
ments from these “information rich” features. This method gener- importance of (ii) is relevant in many applications, such as games
ates only a single surface approximation, however, and is not easilyand military applications, whegynamic deformations of the mesh
adapted to produce riiresolution models. Gross et al. [12] use occur, e.g. in the form of explosions.
a wavelet transform to produce adaptive surface meshing from uni-  The most common drawback of regular grid representations is
form grid data, allowing for local control of the surface level of that the polygonalization is seldom optimal, or even near optimal.
detail. This technique, however, has not yet proven to yield inter- Large, flat surfaces may require the same polygon density as small,
active frame rates. The general problem of surface simplification rough areas do. This is due to the sensitivity to localized, high fre-
has been addressed with methods for mesh decimation and optiquency data within large, uniform resolution areas of lower com-
mization [14, 20], although these techniques are not suitable for plexity. (Most level of detail algorithms require that the mesh is
on-the-fly generation of multiple levels of detail. subdivided into rectangular blocks of polygons to allow for fast
The issue of “continuous” level of detail representations for view culling and coarse level of detail selection.) Hence, (ii)) is
models has been addressed both for surfaces and more general mogiolated as a small bump in the mesh may force higher resolution
eling. Taylor and Barret [22] give an algorithm for surface polyg- data than is needed to describe the remaining area of a block. This
onalization at multiple levels of detail, and use “TIN morphing” problem may be alleviated by reducing the overall complexity and
to provide for visually continuous change from one resolution to applying temporal blending, or morphing, between different levels
another. Many visual simulation systems handle transitions be- of detail to avoid “popping” in the mesh [16, 22].
tween multiple levels of detail by alpha blending two models during ~ €Common to typical TIN and regular grid LOD algorithms is the
the transition period. Ferguson [8] claims that such blending tech- discreteness of the levels of detail. Often, only a relatively small
niques between levels of detail may be visually distracting, and dis- number of models for a given area are defined, and the difference in
cusses a method of Delaunay triangulation and triangle subdivisionthe number of polygons in successive levels of detail may be quite

which smoothly matches edges across areas of different resolutionJarge. When switching between two levels of detail, the net change
in the number of rendered polygons may amount to a substantial

fraction of the given rendering capacity, and may cause rapid fluc-
3 MOTIVATION tuations in the frame rate.
Many LOD algorithms fail to recognize the need for an error
The algorithm presented in this paper has been designed to meet d&ound in the rendered image. While many simplification meth-
number of criteria desirable for a real-time level of detail (LOD) ods are mathematically viable, the level of detail generation and



selection are often not directly coupled with the screen-space errorimply (i), and vice versa). Depending on the constraints inherent
resulting from the simplification. Rather, these algorithms char- in the tessellation method, criterioiii)(may or may not be satisfi-
acterize the data with a small set of parameters that are used inable, but a small upper bourgax 0on € may exist. Our algorithm,
conjunction with viewpoint distance and view angle to select what as presented here, primarily addresses definition (iii), but has been
could be considered “appropriate” levels of detail. Examples of designed to be easily extensible to cover the other two definitions
such algorithms include TIN simplification [9], feature (e.g. peaks, (the color plates included in this paper reflect an implementation
ridges, and valleys) identification and preservation [5, 21], and fre- satisfying (ii)).

quency analysis/transforms such as wavelet simplification [6, 12].

These algorithms often do not provide enough information to de-

rive a tight bound on the maximum error in the projected image. If 4 S|IMPLIFICATION CRITERIA

image quality is important andpbpping” effects need to be min-

imized in animations, the level of detail selection should be based 11,o gface simplification process presented here is best described
on a user-specified error tolerance measured in screen-space, angds 5 sequence of two steps: a coarse-grained simplification of the
should preferably be done on a per polygon/vertex basis. height field mesh geometry that is done to determine which dis-

_The algorithm presented in this paper satisfies all of the above ¢rgte |evel of detail models are needed, followed by a fine-grained

criteria. Some key features of the algorithm include: flexibility and e riangulation of each LOD model in which individual vertices are
efficiency afforded by a regular grid representation; localized poly- ¢qnsidered for removal. The algorithm ensures that no errors are
gon densities due to variable resolution witkiach block; screen-  jhiraduced in the coarse simplification beyond those that would be
space error-driven LOD selection determined by a single threshold; j«roqyced if the fine-grained simplification were applied to the en-
and continuous level of detail, which will be discussed in the fol- jre mesh. Both steps are executed for each rendered frame, and all
lowing section. evaluations involved in the simplification are done dynamically in
real-time, based on the location of the viewpoint and the geometry
3.1 Continuous Level of Detail of the height field.
] ) . The height field is described by a rectilinear grid of points ele-
Continuous Iev_eI of detail has recently be_en used to describe a va-ygted above the-y plane, with discrete sampling intervals xgfs
riety of properties [8, 18, 22], some of which are discussed below. gndy,... The surface corresponding to the height field (before sim-
As mentioned in (i) and (iv) above, it is important that the com- pjification) is represented as a symmetric triangle mesh. The small-
plexity of the surface geometry changes smoothly between consec-est mesh representable using this triangulationptireitive mesh
utive frames, and that the simplified geometry doesn'tlead to gapshas dimensions 8 3 vertices, and successively larger meshes are
or popping in the mesh. In a more precise description of the term formed by grouping smaller meshes in a 2 array configuration
continuityin the context of multiresolution height fields, the con- (see Figure 2). For any levein this recursive construction of the
tinuous function, its domain, and its range must be clearly defined. mesh, the vertex dimensioRgm andygim are 2+ 1. For a certain
This function may be one of the following: leveln, the resulting mesh is said to fornbiock, or a discrete level
) . i of detail model. A set of such blocks of fixed dimensiofAg-2 ver-

(i) The elevation functiom(x,y,t), wherex,y,t € R. The parame- ices squared, describes the height field dataset, where the boundary
tert may denote time, distance, or some other scalar quantity. ;o5 and columns between adjacent blocks are shared. While the
This function morphs (blends) the geometries of two discrete gimensions of all blocks are fixed, the spatial extent of the blocks
levels of detail defined on the same area, resulting in a vir- may vary by multiples of powers of two of the height field sampling
tually continuous change in level of detail over time, or over regojytion, i.e. the area of a block i€ es x 2™ M6 Wherem
distance from the viewpoint to the mesh. is some non-negative integer. Thus, lower resolution blocks can be

obtained by discarding every other row and column of four higher
resolution blocks. We term these decimated verticektluest level
verticesof a block (see Figure 2c). fuadtreedata structure [17]
naturally lends itself to the block partitioning of the height field
dataset described above.

(i) The elevation functiorz(x,y) with domainR2. The functiorz
is defined piecewise on a per block basis. When discrete levels
of detail are used to represent the mesh, two adjacent blocks
of different resolution may not align properly, and gaps along
the boundaries of the blocks may be seen. The elevation
on these borders will not be continuous unless precautions are

taken to ensure that such gaps are smoothed out. a - * A b | ‘ll i -il
r 1 { Ji { r
(i) The polygon distribution functiom(v,A). For any given area d b, 1 kTi; h?
A C R2, the number of polygons used to describe the area 4 S di 99 b
is continuous with respect to the viewpoint Note thatA d, b P %% |c felfy e
does not necessarily have to be a connected set. Since the a | a o tot et
image ofn is discrete, we define continuity in terms of the ° a2 dl_dr

modulus of continuityw(d, n). We say that is continuous iff
w(6,n) — ¢, forsomee < 1, asd — 0. Thatis, for sufficiently
small changes in the viewpoint, the change in the number of

o7
polygons oveA is at most one. As a consequence of a contin-
uous polygon distribution, the number of rendered polygons o 0
(after clipping),n(v), is continuous with respect to the view-
point. a4

Note that a continuous level of detail algorithm may possess one or

more of these independent properties (e.g. (i) does notin generalFigure 2: (a, b) Triangulation of uniform height fields of dimen-

1This vector may be generalized to describe other view dependent pa_sion_s 3x 3 and 5x 5 vertices, respectively. (c) Lowestlevel vertices
rameters, such as view direction and field of view. (unfilled). (d) Block quadrants.




In the following sections, we describe the different simplification
steps. We begin by deriving a criterion for the fine-grained (vertex-
based) simplification. The coarse-grained (block-based) level of
detail selection is then described in terms of the former.

4.1 Vertex-Based Simplification

In the fine-grained simplification step, many smaller triangles are G
removed and replaced with fewer larger triangles. Conceptually, at
the beginning of each rendered frame, the entire height field dataset
at its highest resolution is considered. Wherever certain conditions
are met, ariangle/co-triangle pair(Ag, A, ) is reduced to one
single triangleA, @ A4, and the resulting triangle and its co-
triangle (if one exists) are considered for further simplification in
a recursive manner. In they plane withx,es = Yres, @ triangle/co-
triangle pair is defined by the two congruentright triangles obtained
by bisecting a larger isosceles right triangle. Recursive bisection
of the resulting two triangles yields lower level triangle/co-triangle
pairs. Triangle/co-triangle pairs within a block are descended from
the four triangular quadrants of the block, defined by the block

Figure 3: Geometric representation of delta valued&g = 4,
O =25,08 =15,04 =0.

boundary and its diagonals (see Figure 2d). For arbitrary height approximation is reasonable ?s Iorr:g as the field cl)f view is rel-
field resolutions, the square mesh is simply stretched in either di- atively small, and its effect is that the projected delta segments
mension while retaining the vertex connections. Figure 2a and 2b that represent the errors in the triangle simplification become
illustrate the lowest level pairs, wheeach pair has been assigned relatively smaller at the periphery of the screen, where less de-
a unique letter. tail is then used—an artifact that is often acceptable as human

The conditions under which a triangle pair can be combined visual perception degrades toward the periphery.

into a single triangle are primarily described by the amount of _ : : .
change ingslope b%tween tphe twoytriangles. Fo%/trianglédBE ¢ We asiuma/gyg = Veye = Veye IN .the perspectl.ve divi-
and ABCE, with A, B, andC in a plane perpendicular to they sion ——. This is a fair assumption because, in general,
plane, the slope change is measured by the vertieali§) distance O« ||e— V|| = —Veye.

% = |B;— #L i.e. the maximum vertical distance between

AACE= AABE® ABCEand the triangle2\ABEandABCE (see According to the first approximation, the viewing matrix is then:
Figure 3). This distance is referred to as vefBsdelta value As

the delta value increases, the chance of triangle fusion decreases. Rx Yx ﬁ 0
By projecting thedelta segmentefined byB and the midpoint of % ¥ BV 0
AC, onto the projection plane, one can determine the maximum per- M=| 7 Y vl

ceived geometric (linear) error between the merged triangle and its Xz Yz M 0
corresponding sub-triangles. If this error is smaller than a given -e-X -ey -e M=Vl 1

threshold,t, the triangles may be fused. If the resulting triangle
has a co-triangle with error smaller than the threshold, this pair is with % and{ perpendicular te— v at all times. This definition of
considered for further simplification. This process is applied recur- M leads to the following equalities:
sively until no further simplification of the mesh can be made. Note
that this scheme typically involves a reduction of an already sim- V;rye_ Veye = viM —v—M
plified mesh, and the resulting errors (i.e. the projected delta seg- o ey
ments) are not defined with respect to the highest resolution mesh, 6[ Xz Yz M 0 ]
but rather relative to the result of the previous iteration in the simpli- 5
fication process. However, empirical data indicates that the effects Ry = _ ( € —Vz )
of this approximation are negligible (see Section 7). z 0z [le— V]|
We now derive a formula for the length of the projected delta
segment. Lev be the midpoint of the delta segmeénand define The length of the projected delta segment is then described by the
vi=v+[0 0 2§ Lv=v-[0 0 % ]. Letebe the following set of equations:
viewpoint andg, ¥, Z be the orthonormal eye coordinate axes ex-

pressed in world coordinates. Furthermore,ddie the distance Bscreen = |Vacreen— Vcreedl|

from e to the projection plane, and defiheto be the number of \/ + = 2 + = 2
pixels per world coordinate unit in the screey coordinate sys- _ dAy (Veye — Veya)* + (Véys — Veys)
tem. (We assume that the pixel aspectratio is 1:1.) The subscripts —Veye
eyeandscreerare used to denote vectors representayacoordi- 5 N

nates(after the view transformation) arstreen coordinate@fter dA/(8%)" + (8Y2)

the perspective projection), respectively. Using these definitions, = lle—v]|

the following approximations are made:

2
€—Vz
ecti ~ their midpointy i sy /1- ()
¢ When projecting the vectors™ andv—, their midpointv is al- _

ways assumed to be in the center of view, i.e. alefig This lle—vl|

2 2
20ne may safely substitute the vertex associated with the delta segment _ d)\é\/(eg< - VX) + (@ - Vy) )
for its midpoint. (eS(_VX)2_|_(ql_Vy)2_|_(eZ_VZ)2




For performance reason&..eenis compared tor® so that the
square root can be avoided:

A (- v)?+(=w)D)
(e — V)2 + (By — )2+ (8~ vz)2)* ~

An equivalent inequality that defines the simplificaticondition
reduces to a few additions and multiplications:

& ((ex— w2+ (gy—w)?) <

@ (18- 2+ (8 %) + (6= v

2

@)

wherek = 4 is a constant. Whenevex = vx andey = vy, i.e.

lu = (8,8], for which Equation 2 has to be evaluated. Vertices
with delta values less thay can readily be discarded without fur-
ther evaluation, and conversely, vertices with delta values larger
thandy, cannot be removed. It would obviously be very costly to
computdy, by reversing the projection to get the delta value whose
projection equals for every single vertex within the block, but one
can approximatd, by assuming that the vertices are dense in the
bounding box of the block, and thus obtain a slightly larger superset
of I,. From this point on, we will usk, to denote this superset.

To find the lower bound, of I, the point in the bounding box
that maximizes the delta projection must be found. From Equa-

tion 1, defing = \/(e5< — V)2 + (gy— )2 andh= e, — v,. We seek
to maximize the functiorf (r,h) = 7 subject to the constraints
r24+h2 > d? andv € B, whered is the distance from the viewpoint

when the viewpoint is directly above or below the delta segment, to the projection plane anl is the set of points contained in the
the projection is zero, and the triangles are coalesced. The prob-hounding box, described by the two vectors

ability of satisfying the inequality decreasesesapproaches;,

or when the delta segment is viewed from the side. This makes

sense, intuitively, as less detail is required for a top-down view of
the mesh (assuming a monoscopic view), while more detail is nec

essary to accurately retain contours and silhouettes in side views
The geometric interpretation of the complement of Equation 2 is a

“bialy"—a solid circular torus with no center hole—centered/at

with radiusr = %5 (see Figure 4). The triangles associated with

can be combined provided that the viewpoint is not contained in the

bialy.
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bmin

Dmax [bmax( bma)g, bma)g]

‘We solve this optimization problem by constrainingsuch that
d? —h? <r2, <r2<rZ, (r andh are otherwise independent).
Clearly, thenh? has to be minimized which is accomplished by
settingh = hnin = |e; — clamp bmin,, €z, bmax, )|, where

Xmin  If X < Xmin
clamp(Xmin, X, Xmax) = 4 Xmax  if X > Xmax
X otherwise

In the x-y plane, definermin to be the smallest distance from
[ ex e ] to the rectangular slice (including the interior) of the
bounding box defined by bmin, bmin, ] and[ bmax,  bmay ],
and defina nax to be the largest such distance. Via partial differ-
entiation with respect to, the maximumfmaxof f(r,h)is found at
r = h. If no v exists under the given constraints that satigfiesh,

Figure 4. Geometric representation (and its cross-section) of ther is increased/decreased umik B, i.e. r = clamyrmin, h,rmax)-

boundary of Equation 2.

4.2 Block-Based Simplification

Complex datasets may consist of millions of ygns, and it is
clearly too computationally expensive to run the simplification pro-
cess described in the previous section on all polygon vertices for
each individual frame. By obtaining a conservative estimate of
whether certain groups of vertices can be eliminated in a block, the
mesh can often be decimated by several factors with little computa-
tional cost. If it is known that the maximum delta projection of all
lowest level vertices in a block falls within those vertices can im-

mediately be discarded, and the block can be replaced with a lower

resolution block, which in turn is considered for further simplifica-
tion. Accordingly, a large fraction of the delta projections can be
avoided.

The discrete level of detail selection is done by computing the
maximum delta valuedmax Of the lowest level vertices for each
block. Given the axis-aligned bounding box of a block @3y
one can determine, for a given viewpoint, whether any of these
vertices have delta values large enough to exceed the threshold
If none of them do, a lower resolution model may be used. We
can expand on this idea to obtain a more efficient simplification
algorithm. By usingr, the view parameters, and the constraints
provided by the bounding box, one can compute the smallest delta
value §, that, when projected, can exceedas well as the largest
delta valuedy, that may project smaller tham Delta values between
these extremes fall in amncertainty intervalwhich we denote by

The upper boundy, is similarly found by minimizingf(r,h).
This is done by sing h = hmax= max{|e; — bmin,|, €z — brmax|}-
fmin is then found when eith@r= ryin Orr = rmax Whichever yields
a smallerf (r,h).

The bounds ony can now be found using the following equa-
tions:

T

- ' 3

9 O ©
0 ift=0

5 = ot if 1>0andfmin>0 )
00 otherwise

After computation of,, dmaxiS compared t@, and if smaller,
a lower resolution level of detail block is substituted, and the pro-
cess is repeated for this block.8fax > &, it may be that a higher
resolution block is needed. By maintainid,, = max{dmax |
the larges®may of all higher resolution blocks (dblock descen-
dantg for the given aread,,x is compared ta for the current
block, and if greater, four higher resolution blocks replace the cur-
rent block. As mentioned earlier, this implicit hierarchical organi-
zation of blocks is best represented by a quadtree, where each block
corresponds to a quadnode.

4.3 Vertex Dependencies

As pointed out in Section 4.1, triangle fusion can occur only when
the triangles in the triangle pair appear on the same level in the
triangle subdivision. For example, in Figure 2hg @ Ag and



Ay @ Ay cannot be coalesced unless the triangles in both pairs & * b ¢
(Ag,Lq ) and(Ay, Ay, ) have been fused. The triangles can be

represented by nodes in a binary expression tree, where the small-

est triangles correspond to terminal nodes, and coalesced triangles

correspond to higher level, nonterminal nodes formed by recursive

application of thep operator (hence the subscrip&ndr for “left”

and “right”). Conceptually, this tree spans the entire height field

dataset, but can be limited to each block.

Another way of looking at triangle fusion is as vertex removal, dq e o Wotb NG

i.e. when two triangles are fused, one vertex is removed. We call }}gg{{g{{}}g
this vertex thdase vertexf the triangle pair. Each triangle pair has N7 N7 N N7 ¢
a co-pair associated with #, and the pair/co-pair share the same ."_!‘ J, IANIENIENIZNS
base vertex. The mapping of vertices to triangle pairs, or the nodes Nﬂﬂ AN

i i i i ¥ NN [ZINIZINLZANLZEN]
gssouated with the operators that act on the triangle pairs, results N W TN
in a vertex tree wherein each vertex occurs exactly twice; once ) "A‘M’A. 0“.'}0“.,}0“.“0&

for each triangle pair (Figures 5g and 5h). Hence, each vertex has
two distinct parents (or dependents)—one in each of two binary g.

h. i
subtreedy andTy—as well as four distinct children. If any of the
descendants of a vertaxare included in the rendered mesh, so
is v, and we say that is enabled If the projected delta segment
associated witlv exceeds the threshotdv is said to beactivated
which also implies that is enabled Thus, theenabledattribute of VAR N
vis determined by

activatedv)v ) . .

Figure 5: (a—e) Vertex dependencies by descending levels (left to
enabledle ftr,(v)) v right, top to bottom). An arc fromA to B indicates thaB depends
enabledrightr,(v)) v onA. (f) Chain of dependencies originating from the solid vertex.
enabledle ftr,(v)) v (9, h) Symmetric binary vertex trees (the arcs in (g) correspond to

enabledright,(v)) = enabledv) (). (i) Triangulation corresponding i@).

An additional vertex attributépcked allows theenabledlag to be
hardwired to eithetrue or false, overriding the relationship above.
This may be necessary, for example, when eliminating gaps be-
tween adjacent blocks if compatible levels of detail do not exist,
i.e. some vertices on the boundaries of the higher resolution block MAIN ()
may have to be permanently disabled. Figures 5a—e show the de-'1 ). oo -hframen
pendency relations between vertices level by level. Figure 5f shows for eachactive blockb
the influence of an enabled vertex over other vertices that directly compute,, (Equations 3 and 4)
or indirectly depend on it. Figures 5g and 5h depict the two possi- if Sy < g
ble vertex tree structures within a block, where intersections have mrg)E)I_ralcleb with lower resolution block
been separated for clarity. else if85 . > &

To satisfy continuity condition (i) (see Section 3.1), the al- I’eplrglac):fb with higher resolution blocks
gorithm must consider dependencies that cross block boundaries. for eachactive blockb
Since the vertices on block boundaries are shared between adja- determine ib intersects the view frustum
cent blocks, these vertices must be referenced uniquely, so that th for eachvisible blockb

sections, the algorithm is summarized by the pseudocode below.
Unless qualified with superscripts, all variables are assumed to be-
long to the current frame and block.

~NOoO O WN

dependencies may propagate across the boundaries. In mostimple: 1 | sh—1 g
mentations, such shared vertices are simply duplicated, and these1 0+ ( 3 H—'l]
redundancies must be resolved before or during the simplification 12 1 (80,0, .
stage. One way of approaching this is to access each vertex via a-3 for eachvertexv with &(v) € lo
pointer, and discard the redundant copies of the vertex before thel4 activatedv) « false
block is first accessed. Another approach is to ensure that the at-19 UPDATE-VERTEX(V)
tributes of all copies of a vertex are kept consistent when updates16 for eachvertexv with &(v) € I
(e.g.enabledandactivatedransitions) occur. This can be achieved 17 activatedv) « true
by maintaining a circular linked list of copies for each vertex. 18 UPDATE-VERTEX(V)
19 for eachvertexv with 3(v) € I,
20 EVALUATE-VERTEX(V)
5 ALGORITHM OUTLINE 21 for eachvisible blockb
22 RENDER-BLOCK(b)

The algorithm presented here describes the steps necessary to se-
lect which vertices should be included for rendering of the mesh. UPDATE-VERTEX(V)
In Section 5.1, we describe how the mesh is rendered once the ver- 1 if ~lockedv)

tex selection is done. A discussion of appropriate data structures is 2 if ~dependengiv) Vi
presented in Section 6. Using the equations presented in previous 3 if enabledv) # activatedv)
4 enabledv) « —enabledv)
3Triangle pairs with base vertices on the edges of the finite dataset are 5 NOTIFY(parent,(v), branchr,(v),enabledv))

an exception. 6 NOTIFY(parent,(v), branchr, (v),enabledv))



EVALUATE-VERTEX(V)
1 if —lockedv)
if ~dependengiv) Vi
activatedv) «+ —Equation 2
if enabledv) # activatedv)
enabledv) «+ —enabledv)
NOTIFY(parenty,(v), branchy,(v),enabledv))
NOTIFY(parenty(v), branchr,(v),enabledv))

~NOoO O WN

NOTIFY (v, child, state

1 if vis avalid vertex
2 dependengy;q(v) « state
3 if ~lockedv)
4 if ~dependengiv) Vi
5 if ~activatedv)
6 enabledv) + false
7 NOTIFY (parent,(v), branchr(v), false)
8 NOTIFY(parent(v), branchr,(v), false)
9 else
10 if ~enabledv)
11 enabledv) « true
12 NOTIFY (parenty,(v), branchy,(v), true)
13 NOTIFY(parenty(v), branchr, (v), true)

The termactive blockrefers to whether the block is currently
the chosen level of detail for the area it covers. All blocks initially
havel, setto[0,»), and so do blocks that previously were inactive.
When deactivating vertices with delta values smaller thathe in-
tervallp C [0,9] is traversed. By inductive reasoning, vertices with
deltas smaller than the lower boundlgfmust have been deacti-
vated in previous frames. Similarly, is used for vertex activation.

In quadtree implementations, the condition on line 4N may
have to be supplemented; the cdimh omax < ¢ should also hold
for the three neighboring siblings bfbeforeb can be replaced.

If a vertex's enabled attribute changes, all dependent ver-
tices must be notified of this change so that their corresponding
dependencffags are kept consistent with this change. The proce-
dureuPDATE-VERTEX checks ifenabledv) has changed, and if so,
notifiesv's dependents by callingoTiFy. If the enabledflag of a
dependentin turn is modified,OTIFY is called recursively. Since
line 2inNOTIFY necessarily involves a change ad ependendyit,
there may be a transition enabledv) from true to falseon line 6
providedactivatedyv) is falseas the vertex is no longer dependent.
The evaluation of Equation 2 on line 3 BVALUATE-VERTEX can
be deferred if any of the vertexd® pendencffags are set, which is
of significant importance as this evaluation is one of the most com-
putationally expensive parts of the algorithm. Note that there may
be a one-frame delay before thetivatedattribute is corrected due

call (IRIS GL), or aglVertex() call (OpenGL). A copy of the
two-entry graphics vertex buffemy-bu f fer, is maintained explic-

itly to allow the decision as to when to swap the entries to be made.
The most recent vertex in this buffer is indexedty.

The following pseudocode describes the mesh rendering algo-
rithm. Each of the four triangular quadragtsre rendered in coun-
terclockwise order, with the first vertex in each quadrant coincident
with the last vertex in the previous quadrant (see Figure 2d). Hence,
a single triangle mesh can be used to render the entire block. The
indicesq;, gj;, andg;, correspond to the left, top, and right vertex
indices of quadrard;, respectively, with the “top” index being the
center of the block. The block dimensions afet2l squared.

RENDER-BLOCK(b)
1 entertriangle mesh mode
2 render vertexgy,
3 mybuffery < do
4 previouslevel+ 0
5 for eachquadrang; in blockb
6 if previouslevelis even
7 toggleptr
8 else
9 swap vertices in graphics buffer
10 render vertexg,
11 my-buf fery + q;
12 previouslevel+ 2n+1
13 RENDER-QUADRANT(Qj, Gi¢, i, 2N)

14 render vertexg,

15 exit triangle mesh mode
RENDER-QUADRANT(i, it,ir,level)
1 iflevel>0
2 if enabledv;,) o
3 RENDER-QUADRANT(ij, 't i, level— 1)
4 if it € my-buffer
5 if level+ previouslevelis odd
6 toggleptr
7 else
8 swap vertices in graphics buffer
9 render vertex;,
10 my-bu f fery — it
11 previouslevel« level
12 RENDER-QUADRANT(it, 5 iy, level— 1)

The index% corresponds to the (base) vertex that inthyeplane

is the midpoint of the edg®,V;,. Sincemy-buf ferreflects what
vertices are currently in the graphics buffer, line 9RENDER-
BLOCK and line 8 INnRENDER-QUADRANT could be implemented
with aglVertex() call, passing the second most recent vertex in

to this deferral if the child vertices are evaluated after the dependentyy.hy f fer.

vertex (line 2 ofEVALUATE-VERTEX and lines 4-5 oNOTIFY).
The functionbranchr(v) refers to the field of the parent in tr@e
that reflects theenabledfield of vertexv. Note that a check has
to be made (line 1 iNnOTIFY) whether a vertex is “valid” as some
vertices have fewer than two dependents (e.g. boundary vertices).

5.1 Mesh Rendering

6 DATA STRUCTURES

Many of the issues related to the data structures used with this al-
gorithm have purposely been left open, as different needs may de-
mand totally different approaches to their representations. In one
implementation—the one presented here—as few as six bytes per

Once the vertex selection is made, a triangle mesh must be formedvertex were used, and as many as 2_8 bytes per vertex were n_eeded
that connects the selected vertices. This mesh is defined by speciin another. In this section, we describe data structures that will be
fying the vertices encountered in a pre-order descent of the binaryuseful in many implementations.

vertex trees. The recursive stopping citiod is afalse enabled
attribute. To efficiently render the mesh, a triangle mesh graph-
ics primitive, such as the one supported by IRIS GL and OpenGL
[11, 15], may be used. For each specified vewteke previous two
vertices and/ form the next triangle in the mesh. At certain points,
the previous two vertices must be swapped vianaptmesh()

For a compact representation, the vertex elevation is discretized
and stored as a 16-bit integer. A minimum of six additional
bits per vertex are required for the various flags, including the
enabled activated and fourdependencuttributes. Optionally,
the locked attribute can be added to these flags. The theoreti-
cal range of delta values beconi8s2'® — 1] in steps of3. We



elect to store each in “compressed” form as an 8-bit integér T . d‘SP'aceme'tg . .
in order to conserve space by encapsulating the vertex structure in 5555 ”aegg meo 'g‘g ”8"’8;) S = gg' > Té 00)0
a 32-bit allqnedAzwogd. 2We define .the decompressmn functlon as 0125 | 003 000 | 052 0.05 6.41
5= 1|(1+8)H%/(Z-1° 1|4 This exponential mapping pre- 0250 | 006 | 000| 085 0.09 452
serves the accuracy needed for the more frequent small deltas, while 0.500 | 0.11 0.04 | 1.56 0.15 3.14
allowing large delta values to be represented, albeit with less accu- 1.000 | o0.21 0.07 | 2.88 0.29 2.61
racy. The compression function is defined as the inverse of the de- i-ggg 8-;‘2 8-;2 1(5)-?71 2-22 5-2‘7‘

mpression function. Both functions are implemented as looku : : : : : :
COMmPressio P P 8.000 | 1.38 0.19 | 16.69 2.08 1.38
tables.

rendering an rf following, L
To accommodate tasks such as rendering and surface following Table 1: Screen-space error in simplified geometry.

the vertices must be organized spatially for fast indexing. In Sec-
tion 4.2, however, we implied that vertices within ranges of delta
values could be immediately accessed. This is accomplished by cre

ating an auxiliary array of indices, in which the entries are sorted
on the corresponding vertices' delta values. Each entry uniquely
references the corresponding vertéx) via an index into the ar-

ray of vertex structures. For each possible compressed delta valu%r the hi

within a block, there is a pointer (index} to a bin that contains
the vertex indices corresponding to that delta value. Thbids

animated sequences, and the resultingese$, when textured, are
seemingly identical to the ones obtained with no mesh simplifica-
tion. Color Plates 1a—c illustrate the three stages of simplification
att = 1. In Color Plate 1c, note how many polygons are required
gh frequency data, while only a few, large polygons are
used for the flatter areas. For this particular threshwjfll) /ny(1)

is slightly above 200, while1(1)/ny(1) is 18. The bottommost,

are stored in ascending order in a contiguous, one-dimensional ar-gashed curve in Figure 6 represents the total number of delta values
ray. The entries in binare then indexed by;, pi +1,...,piy1—1 that fall in the uncertainty interval per frame (Section 4.2). Note
(pi = pi+1 implies that bini is empty). For block dimensions up  that this quantity is generally an order of magnitude smaller than
to 27+ 1, the indices can be represented with 16 bits to save space the number of rendered polygons. This is significant as the evalu-
which in addition to the 32-bit structure described above, results in ations associated with these delta values constitute the bulk of the

a total of six bytes storage per vertex.

7 RESULTS

To show the effectiveness of the polygon reduction and display al-
gorithm, we here present the results of a quantitative analysis of the
number of polygons and delta projections, frame rates, computa-
tion and rendering time, and errors in the approximated geometry.
A set of color plates show the resulting wireframe nigalations
and textured terrain surfaces at different stages of the simplifica-
tion and for different choices af Two height field datasets were
used in generating images and collecting data: a 4aeea digital
elevation model of the Hunter-Liggett military base in California,
sampled at % 2 meter resolution, and 1 meter heightresolution
(Color Plates 1a—c and 2a—c); and & 1 meter resolution, 14 kfn
area of 29 Palms, California, withzresolution of one tenth of a
meter (Color Plates 3a—d). The vertical field of view ig & all
images, which were generated on a two-processor, 150 MHz SGI
Onyx RealityEnginé [1], and have dimensions 1024768 pixels
unless otherwise specified.

We first examine the amount of polygon reduction as a function
of the threshold. A typical view of the Hunter-Liggett terrain was

computation in terms of CPU time. This also shows the advantage
of computing the uncertainty interval, as out of the eight million
vertices contained in the view frustum, only 14,000 evaluations of
Equation 2 need to be made whes 1.

100000000

10000000 —®—— Polygons before

simplification

1000000
—{F—— Polygons after block-

100000 . based simplification

—— Polygons after vertex-

10000 based simplification

————— Delta projections

I
|
|
|
|
1000 |
|
|

100
0

Threshold (pixels)
Figure 6: The number of polygonsg, n1, nz, from top to bottom)
as a function oft. The bottom curve shows the number of times
Equation 2 was evaluated per frame.

In order to evaluate the errors due to the simplification, the points

chosen for this purpose, which includes a variety of features suchon the polygonal surface of the simplified mesh that have been dis-
as ridges, valleys, bumps, and relatively flat areas. Figure 6 showsplaced vertically, as well as the remaining triangle vertices, are per-
four curves drawn on a logarithmic scale (vertical axis). The top spective projected to screen-space and compared to the projections

horizontal line,no(t) = 13- 10°, shows the total number of poly-
gons in the view frustum before any reduction method is applied.
The curve second from the topy (1), represents the number of
polygons remaining after the block-based level of detail selection
is done. The number of polygons rendemsl1), i.e. the remain-
ing polygons after the vertex-based simplification, is shown by the
lowest solid curve. As expected, these two curves flatten ot as
is increased. The rating(T)/ny(1) ranges from about 2t & 0) to
over 6,000 = 8). Of course, at = 0, only coplanar triangles are
fused. The ration;(1)/ny(1) varies between 1.85 and 160 over the
same interval, which clearly demonstrates the advantage of refining
each uniform level of detail block.

We pay special attention to the data obtained at1, as this
threshold is small enough that virtually no popping can be seen in

4This results in an upper bour?ésg—l for the delta values.

of the original set of vertices. Optimally, each such screen coordi-
nate displacement should fall within the threshold distanétow-
ever, this constraint may in certain cases be violated due to the ap-
proximations discussed in Section 4.1. Table 1 was compiled for
each mesh after vertex-based simplification was applied, and the
surface points were correlated with the original eight million ver-
tices shown in Color Plate 1a. The table summarizes the mean,
median, maximum, and standard deviation of the displacements in
number of pixels, as well as the fraction of displacements that ex-
ceedt. In all cases, the average pixel error is well betowlt can
be seen that the approximations presented in Section 4.1 do not sig-
nificantly impact the accuracy, as the fraction of displacements that
exceed is typically less than five percent.

Color Plates 2a—c illustrate a checkerboard pattern draped over
the polygonal meshes from Color Plates la—c. [iataely, these
images suggedittle or no perceivable loss in image quality for a



threshold of one pixel, even when the surface complexity is reduced
by a factor of 200.

Figure 7 demonstrates the efficiency of the algorithm. The com-
putation time associated with the delta projections (lines 10-20 in
MAIN, Section 5) is typically only a small fraction of the render-
ing time. This data was gathered for the views shown in Color
Plates 3a—d.

——®—— Delta projection time ——{—— Rendering time —— Total time

10000

1000

Time (ms)
=
o
o

10

Threshold (pixels)

Figure 7: Rendering and evaluation times and their sum as functions
of 1.

Figure 8 shows how the quantities in Figure 6, as well as the
frame rate vary with time. The data collection for 3,230 frames was
done over a time period of 120 seconds, with the viewpoint follow-
ing a circular path of radius 1 km over the Hunter-Liggett dataset.
The terrain was rendered as a wireframe mesh in ax6480 win-
dow, withT = 2 pixels. It can be seen that the number of rendered
polygons does not depend on the total number of polygons in the
view frustum, but rather on the complexity of the terrain intersected
by the view frustum. As evidenced by the graph, a frame rate of at

retained. The concept of continuous level of detail allows a polygon
distribution that is near optimal for any given viewpoint and frame,
and also yields smooth changes in the number of rendered poly-
gons. A single parameter that can easily be changed interactively,
with no incurred cost, determines the resulting image quality, and
a direct relationship between this parameter and the number of ren-
dered polygons exists, providing cajidies for maintaining con-
sistent frame rates. The algorithm can easily be extended to handle
the problem of gaps between blocks of different levels of detail, as
well as temporal geometry morphing to further minimize popping
effects.
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2a. Before simplification 2b. After block—-based LOD  2c. After vertex—based LOD
13,304,214 polygons 1,179,690 polygons 64,065 polygons

3a. 1=0.5, 62,497 polygons

3c. 1=2.0, 8,612 polygons 3d.=4.0, 3,385 polygons



