Net Yaroze User Font Module

By Matt Verran

Description	

Here is a font module so you can include your own fonts into your yaroze projects. Hopefully it is easy to use and does the job expected. See usage for instructions. Please if you like or intend to use contact me and let me know. I wouldn’t mind a little credit if it gets in any finished projects. I have tried to keep this documentation style close to the official Yaroze docs, hopefully people will find it more helpful.

I strongly recommend printing it out, reading a word doc while trying to code isn’t nice, and you run the risk of another shoddy MS program crashing your computer before you have chance to save.

Please read the usage section, it contains quite important stuff.

My motivation for writing this was because the font problem comes up all the time on the newsgroups yet there doesn’t seem to be a finished example of how to achieve fonts easily available. When I was first starting out writing these functions was a bit of a knightmare (without Tregard to help), hopefully this package will help others.

Contents	

		Usage					2

		Contact				3

		data structures

			Font				4

		functions

			LoadFont			5

			ColFont			6

			DispFont			7

			DispFontDX			8

�
Usage		

Firstly in order to use this module you must have a “fonttile.tim”. An example has been included, but this is just for test purposes and not really adequate for most applications, it contains no numbers for example. In this version fonttile.tim must be an 8-bit tim, and each letter must occupy the same amount of space. This means you cannot have a proportional font. Also don’t forget to set the transparency setting (‘translucent except black’ checkbox in Timutil) if you want to be able to use ColFont’s transparency option.

Drop font.o and font.h into the same directory as your code and add the line “#include font.h” to your main.c file. Don’t forget to load in the fonttile.tim to the yaroze before you run code that tries to load/display a font. See below for very important

To load/setup the example fontile.tim include the lines:

Font sFont; //this is your font structure

sFont.char_width=8;

sFont.char_height=8;

sFont.rows=2;

sFont.columns=13;

sFont.start_char='a';

sFont.end_char='z';

sFont.tim_data=SPRITE_ADDRESS; //SPRITE ADDRESS is where 						 //you loaded fontile.tim

LoadFont(&sFont);

This declares your Font structure and sets it up then LoadFont finishes off the initialisation so you can use it. Now to put text on the screen (assuming your GsOt variable is called ‘world_ordering_table’ and it index is ‘output_buffer_index’):

ColFont(128,128,128,0,&sFont);

DispFont("my little test is success", 50, 94, &sFont, 	&world_ordering_table[output_buffer_index], 0);

	ColFont sets the font colour to white non-transparent. DispFont then 	puts it up on the screen, note this must be called in the render section of 	your code.

	I’ll let you figure out DispFontDX by yourself, nice eh?

Lastly I will try and explain why there is a start and end character 	setting in the Font structure. When DispFont tries to display your string 	it converts it to ASCII (if you don’t know what this is, go find out and 	get an ASCII table while you are at it). Basically as long as the 	character blocks in your Tim are in the same order as ASCII you can 	give the start and end chars and the routines will work, so you could 	draw a Tim containing the entire ASCII table or one with just the 	numbers 0 to 9, it is up to you. Quick tip: if you do want to use 	numbers then turn your numeric values into strings using the sprintf 	function.

Thanks	

		Thanks to Tenchi who indirectly helped through a newsgroup posting 		and Tom who improved the GsOt stuff.

Contact	

Matt Verran / frktlx

email: matt@frktl.freeserve.co.uk

url: http://www.frktl.freeserve.co.uk

NY url: http://www.netyaroze-europe.com/frktlx˜/

If anyone wants to suggest, improve, comment or complain please don’t hesitate to do so. I know this isn’t perfect, there were several font display methods discussed on the newsgroups that improve on what is here but that wasn’t the point. The point was to get a working bolt-on font mechanism out to all those people who were having problems. At the moment I am busy working on my own game project but if anyone wants to improve the code please send the new version to me so I can update this package. I don’t mind updating these docs (too much). On the other hand if anyone wants to do some good examples (I realise the usage section is a little lacking) please get them to me so I can include with this lot.

�
Font

Font definition

Structure	

		struct Font {

				int rows, columns;

				int char_height, char_width;

				char start_char,end_char;

				long tim_data;

				u_char start_u, start_v;

				GsSPRITE spriteHandler;

				GsIMAGE imageHandler;

		};

Members	

		rows, columns			The number of rows and columns of 							characters that the fonttile texture uses.

		char_height, char_width	The height and width (in pixels) that 							defines one character in the fonttile 							texture.

tim_data			The address in main ram that the fontile 					is stored.

		start_char, end_char		The first and last characters represented 						in the fonttile texture.

		start_u, start_v		Stores the start coordinates of the 							fonttile, set internally in LoadFont, no 						need to touch.

		spriteHandler			Internal sprite handler, set internally in 						LoadFont, no need to touch.

		imageHandler			Internal tim image handler, set internally 						in LoadFont, no need to touch.

		

Comments	

This structure is the definition for a user font. The rows, columns, char_height, char_width, start_char, end_char and tim_data members must all be set up before the LoadFont function call is made.

�
LoadFont

Loads and initialises user font

Format	

		void LoadFont (

Font *Font

)

Arguments	

Font				Font structure to be loaded into.

Return Value	

		None

Comments	

Loads the fonttile texture from main ram into video ram and sets up the Font structure internal members start_u, start_v, spriteHandler and imageHandler.

Notes		

The rows, columns, char_height, char_width, start_char, end_char and tim_data members of the Font structure to be loaded into must all be set up before the LoadFont function call is made.

�
ColFont

Changes colour and transparency settings for font

Format	

		void ColFont (

u_char r, g, b,

u_char trsp,

Font *Font

)

Arguments	

r, g, b,				Red green and blue that the passed font is 					to be set to, 0-255, 128=original value.

trsp,				Set to 1 if you want to make the font 						transparent, 0 otherwise.

Font				Font that colour values are to be applied 					to.

Return Value	

		None

Comments	

Allows alteration of colour values and transparency effects on fonts.

�
DispFont

Renders text to screen using user font

Format	

		void DispFont (

char *text,

int x, y,

Font *Font,

GsOT *ot,

int sort

)

Arguments	

text				String that is to be rendered to screen.

x, y				Position (in pixels) on screen that string 					is to start.

Font				Font that is to be used for rendering.

GsOt				Ordering table header.

Sort				Sorting position for text in OT

Return Value	

		None

Comments	

Renders a string onto the current active screen buffer at specified position using passed font.

Notes		

Any characters in the string that are not within the start_char-end_char range will be replaced with a blank space on render.

See Also	

		DispFontDX()

�
DispFontDX

Renders text to screen using user font

Format	

		void DispFontDX (

char *text,

int x, y,

short scalex, scaley,

long rotate,

Font *Font,

GsOT *ot,

int sort

)

Arguments	

text				String that is to be rendered to screen.

x, y				Position (in pixels) on screen that string 					is to start.

scalex, scaley			x and y direction scaling values, 						4096=original size.

Rotate				rotation angle, 4096=1 degree.

Font				Font that is to be used for rendering.

GsOt				Ordering table header.

Sort				Sorting position for text in OT

Return Value	

	
